By subjecting a quantum computer’s qubits to quasi-rhythmic laser pulses based
on the Fibonacci sequence, physicists demonstrated a way of storing quantum
information that is less prone to errors.

By shining a laser pulse sequence inspired by the Fibonacci numbers at atoms
inside a quantum computer, physicists have created a remarkable,
never-before-seen phase of matter. The phase has the benefits of two time
dimensions despite there still being only one singular flow of time, the
physicists report July 20 in Nature.

This mind-bending property offers a sought-after benefit: Information stored
in the phase is far more protected against errors than with alternative
setups currently used in quantum computers. As a result, the information can
exist without getting garbled for much longer, an important milestone for
making quantum computing viable, says study lead author Philipp Dumitrescu.

The approach’s use of an “extra” time dimension “is a completely different
way of thinking about phases of matter,” says Dumitrescu, who worked on the
project as a research fellow at the Flatiron Institute’s Center for
Computational Quantum Physics in New York City. “I’ve been working on these
theory ideas for over five years, and seeing them come actually to be
realized in experiments is exciting.”

Dumitrescu spearheaded the study’s theoretical component with Andrew Potter
of the University of British Columbia in Vancouver, Romain Vasseur of the
University of Massachusetts, Amherst, and Ajesh Kumar of the University of
Texas at Austin. The experiments were carried out on a quantum computer at
Quantinuum in Broomfield, Colorado, by a team led by Brian Neyenhuis.

The workhorses of the team’s quantum computer are 10 atomic ions of an
element called ytterbium. Each ion is individually held and controlled by
electric fields produced by an ion trap, and can be manipulated or measured
using laser pulses.

Each of those atomic ions serves as what scientists dub a quantum bit, or
‘qubit.’ Whereas traditional computers quantify information in bits (each
representing a 0 or a 1), the qubits used by quantum computers leverage the
strangeness of quantum mechanics to store even more information. Just as
Schrödinger’s cat is both dead and alive in its box, a qubit can be a 0, a 1
or a mashup — or ‘superposition’ — of both. That extra information density
and the way qubits interact with one another promise to allow quantum
computers to tackle computational problems far beyond the reach of
conventional computers.

There’s a big problem, though: Just as peeking in Schrödinger’s box seals
the cat’s fate, so does interacting with a qubit. And that interaction
doesn’t even have to be deliberate. “Even if you keep all the atoms under
tight control, they can lose their quantumness by talking to their
environment, heating up or interacting with things in ways you didn’t plan,”
Dumitrescu says. “In practice, experimental devices have many sources of
error that can degrade coherence after just a few laser pulses.”

The challenge, therefore, is to make qubits more robust. To do that,
physicists can use ‘symmetries,’ essentially properties that hold up to
change. (A snowflake, for instance, has rotational symmetry because it looks
the same when rotated by 60 degrees.) One method is adding time symmetry by
blasting the atoms with rhythmic laser pulses. This approach helps, but
Dumitrescu and his collaborators wondered if they could go further. So
instead of just one time symmetry, they aimed to add two by using ordered
but non-repeating laser pulses.

The best way to understand their approach is by considering something else
ordered yet non-repeating: ‘quasicrystals.’ A typical crystal has a regular,
repeating structure, like the hexagons in a honeycomb. A quasicrystal still
has order, but its patterns never repeat. (Penrose tiling is one example of
this.) Even more mind-boggling is that quasicrystals are crystals from
higher dimensions projected, or squished down, into lower dimensions. Those
higher dimensions can even be beyond physical space’s three dimensions: A 2D
Penrose tiling, for instance, is a projected slice of a 5D lattice.

For the qubits, Dumitrescu, Vasseur and Potter proposed in 2018 the creation
of a quasicrystal in time rather than space. Whereas a periodic laser pulse
would alternate (A, B, A, B, A, B, etc.), the researchers created a
quasi-periodic laser-pulse regimen based on the Fibonacci sequence. In such
a sequence, each part of the sequence is the sum of the two previous parts
(A, AB, ABA, ABAAB, ABAABABA, etc.). This arrangement, just like a
quasicrystal, is ordered without repeating. And, akin to a quasicrystal,
it’s a 2D pattern squashed into a single dimension. That dimensional
flattening theoretically results in two time symmetries instead of just one:
The system essentially gets a bonus symmetry from a nonexistent extra time
dimension.

Actual quantum computers are incredibly complex experimental systems,
though, so whether the benefits promised by the theory would endure in
real-world qubits remained unproven.

Using Quantinuum’s quantum computer, the experientialists put the theory to
the test. They pulsed laser light at the computer’s qubits both periodically
and using the sequence based on the Fibonacci numbers. The focus was on the
qubits at either end of the 10-atom lineup; that’s where the researchers
expected to see the new phase of matter experiencing two time symmetries at
once. In the periodic test, the edge qubits stayed quantum for around 1.5
seconds — already an impressive length given that the qubits were
interacting strongly with one another. With the quasi-periodic pattern, the
qubits stayed quantum for the entire length of the experiment, about 5.5
seconds. That’s because the extra time symmetry provided more protection,
Dumitrescu says.

“With this quasi-periodic sequence, there’s a complicated evolution that
cancels out all the errors that live on the edge,” he says. “Because of
that, the edge stays quantum-mechanically coherent much, much longer than
you’d expect.”

Though the findings demonstrate that the new phase of matter can act as
long-term quantum information storage, the researchers still need to
functionally integrate the phase with the computational side of quantum
computing. “We have this direct, tantalizing application, but we need to
find a way to hook it into the calculations,” Dumitrescu says. “That’s an
open problem we’re working on.”

### Reference:

Dumitrescu, P.T., Bohnet, J.G., Gaebler, J.P. et al. Dynamical topological
phase realized in a trapped-ion quantum simulator. Nature 607, 463–467 (2022).
DOI: 10.1038/s41586-022-04853-4

Tags:
Physics