Astronomers at Western Sydney University have discovered one of the biggest
black hole jets in the sky.
Spanning more than a million light years from end to end, the jet shoots
away from a black hole with enormous energy, and at almost the speed of
light. But in the vast expanses of space between galaxies, it doesn't always
get its own way.
Taking a closer look
At a mere 93 million light-years away, the galaxy NGC2663 is in our
neighborhood, cosmically speaking. If our galaxy were a house, NGC2663 would
be a suburb or two away.
Looking at its starlight with an ordinary telescope, we see the familiar
oval shape of a "typical" elliptical galaxy, with about ten times as many
stars as our own Milky Way.
Typical, that is, until we observed NGC2663 with CSIRO's Australian Square
Kilometre Array Pathfinder (ASKAP) in Western Australia – a network of 36
linked radio dishes forming a single super-telescope.
The radio waves reveal a jet of matter, shot out of the galaxy by a central
black hole. This high-powered stream of material is about 50 times larger
than the galaxy: If our eyes could see it in the night sky, it would be
bigger than the Moon.
While astronomers have found such jets before, the immense size (more than a
million light years across) and relative closeness of NGC2663 make these
some of the biggest known jets in the sky.
Shock diamonds
So, what did we see, when the precision and power of ASKAP got a "close-up"
(astronomically speaking!) view of an extragalactic jet?
This research is led by doctoral student Velibor Velović of Western Sydney
University and has been accepted for publication in the journal Monthly
Notices of the Royal Astronomical Society (preprint available here). Our
Evolutionary Map of the Universe (EMU) survey sees evidence of the matter
between galaxies pushing back on the sides of the jet.
This process is analogous to an effect seen in jet engines. As the exhaust
plume blasts through the atmosphere, it is pushed from the sides by the
ambient pressure. This causes the jet to expand and contract, pulsing as it
travels.
As the image below shows, we see regular bright spots in the jet, known as
"shock diamonds" because of their shape. As the flow compresses, it glows
more brightly.
Biggest one yet
As well as in jet engines, shock diamonds have been seen in smaller,
galaxy-sized jets. We've seen jets slam into dense clouds of gas, lighting
them up as they bore through. But jets being constricted from the sides is a
more subtle effect, making it harder to observe.
However, until NGC2663, we've not seen this effect on such enormous scales.
This tells us there is enough matter in the intergalactic space around
NGC2663 to push against the sides of the jet. In turn, the jet heats and
pressurizes the matter.
This is a feedback loop: intergalactic matter feeds into a galaxy, galaxy
makes black hole, black hole launches jet, jet slows supply of intergalactic
matter into galaxies.
These jets affect how gas forms into galaxies as the universe evolves. It's
exciting to see such a direct illustration of this interaction.
The EMU survey, which is also responsible for identifying a new type of
mysterious astronomical object called an "Odd Radio Circle", is continuing
to scan the sky. This remarkable radio jet will soon be joined by many more
discoveries.
As we do, we'll build up a better understanding of how black holes
intimately shape the galaxies forming around them.
This article is republished from The Conversation under a Creative Commons
license. Read the
original article.
Tags:
Space & Astrophysics