Quantum physicists discovered a new phase of matter that can move its own
atom without exhibiting energy loss. The phase is called 'two-dimensional
supersolid,' the first-ever supersolid matter that exhibits superfluidity, a
frictionless feature similar to a liquid.
Supersolid matters are materials that have their atom arranged in a constant
and definite pattern. The atoms in the supersolid behave in a significant
way compared to other phases of matter.
In addition, the atoms in this type of phase have energy flowing thoroughly
in a continuous pattern even though they are keeping still and steady in
their positions.
Atoms in the supersolids are seemingly impossible to create, similar with
their jumps to a different state of phase compared to the regular phases of
matter.
The weird atomic compositions have been a topic for development, and various
cases have been conducted since the 1950s to produce such unusual phases.
Since the proposal of the new matter began, studies that followed agreed
that supersolids are indeed possible to exist.
Creating a 2D Supersolid Matter
Supersolids, according to the study, were formed theoretically into 2D
materials by utilizing lasers and super-chilled glasses. By creating the
supersolid model, the experts will understand more about the new phase of
matter that is so bizarre yet might actually be normal.
Among the interests of the scientists was to see how the 2D supersolids will
react to an external force applied to them. The key expectation of the
experts is that the 2D supersolid could rotate its internal composition,
creating a vortex or tiny whirlpools.
Innsbruck University's Institute for Quantum Optics and Quantum Information
expert and lead author of the study Matthew Norcia said in an interview with
Live Science
that many things are expected to be produced by the 2D supersolids.
The development of the new matter phase could be the gateway to acquiring
new data from rotational oscillation and the vortices that could occur
inside the 2D object perpetually as opposed to a 1D structure.
Supersolid Matter Phase: Bose-Einstein Condensate and Quantum Gas
The supersolid construction required the team to utilize a set of numerous
dysprosium-164 atoms and suspend it within optical tweezers. This process
allowed the experts to decrease the temperature of the atoms down to 273.15
degrees Celsius with the help of the laser-cooling technique.
Lasers usually catalyze a target object to increase its temperature and make
it significantly hotter. However, if the laser photons or beams are to
travel in the opposite direction and will target a moving cluster of gas
particles, it will result in a gradual cooling effect. The cooling method
was then 'loosened' after the laser reached its maximum limit for a few
dysprosium atoms to repel and escape.
Evaporative cooling was then observed after the first segment of the
experiment due to the warmer particles moving more erratically as opposed to
the cooler atoms. With that said, the super-cooled atoms resulted in the new
phase of matter in absolute zero called the Bose-Einstein condensate into a
2D supersolid structure.
Reference:
Norcia, M.A., Politi, C., Klaus, L. et al. Two-dimensional supersolidity in a
dipolar quantum gas. Nature 596, 357–361 (2021).
DOI: 10.1038/s41586-021-03725-7
Tags:
Physics